Global Estimates of 3D Effects and the Sensitivity of GCMs to Subgrid-Scale Cloud Structure

Howard W. Barker Jason N. S. Cole

Meteorological Service of Canada

- a global estimate of 3D RT effects
 - 2D MMF data + SW and LW MC algorithms
- RT and climate modelling
 - how advanced are we?
 - prospects for 3D RT
 - examples of McICA noise impacts

A global estimate of 3D RT effects

 Cole, Barker, O'Hirok, Clothiaux, Khairoutdinov, and Randall, 2005: Atmospheric Radiative Transfer Through Global Arrays of 2D Clouds. In press: Geophys. Res. Lett.

- MMF-GCM:
 - 2D CSRM in each GCM column
 - x = 4 km
 - every 9 hrs for Dec. 2000
 - 3D MC for SW and LW:
 - Sun incident parallel to CSRM fields
 - domain average profiles: 10⁶ photons/field

How important are 3D effects at x < 4 km?

$$\frac{\partial \alpha_{2D}}{\partial \Delta x} \approx \frac{\partial \alpha_{ICA}}{\partial \Delta x}$$

$$\frac{\partial \alpha_{ICA}}{\partial \Delta x} = \sum_{n=1}^{\infty} \frac{\partial \alpha_{ICA}}{\partial \langle \tau^n \rangle} \frac{\partial \langle \tau^n \rangle}{\partial \Delta x}$$

$$\frac{\partial \alpha_{2D}}{\partial \Delta x} = \sum_{n=1}^{\infty} \frac{\partial \alpha_{2D}}{\partial \langle \tau^n \rangle} \frac{\partial \langle \tau^n \rangle}{\partial \Delta x} + \frac{\partial \alpha_{2D}}{\partial \text{geometry}} \frac{\partial \text{geometry}}{\partial \Delta x}$$

for small x:

$$\frac{\partial \alpha_{2D}}{\partial \text{geometry}} \frac{\partial \text{geometry}}{\partial \Delta x} \approx 0$$

$$\left| \frac{\partial \alpha_{ICA}}{\partial \langle \tau^n \rangle} \right| \gtrsim \left| \frac{\partial \alpha_{2D}}{\partial \langle \tau^n \rangle} \right| \to 0$$

Some practical issues regarding 3D RT and climate modelling

conventional

- Is it worth the effort of accounting for 3D effects in GCMs?
 - E(McICA) = E(ICA) (+ controllable conditional ran. err.)
 - stochastic methods: feasible? how 3D are they?
 - E(stochastic) ≠ E(3D) (+ uncontrollable ran. err.)
 - synthetic fields + 3D MC (10⁶): feasible | justifiable?

Has anything been gained?

- 3D MC (10⁶) in MMF?
 - good for domain averages, but... Cole et al. (2005)

How much has been gained?

The Monte Carlo Independent Column Approximation: A Stopgap Solution?

Independent Column Approximation:

$$\langle F \rangle = \frac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} F_n$$
 + $\mathcal{F}_n = \sum_{k=1}^{\mathcal{K}} F_{n,k}$ CKD

$$\langle \mathcal{F} \rangle = rac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} \sum_{k=1}^{\mathcal{K}} F_{n,k}$$

$$\boxed{\mathsf{BB-ICA}}$$

$$\langle \mathcal{F} \rangle' = \sum_{k=1}^{\mathcal{K}} F_{s_k,k}$$

optical characteristics from the RT solver!

a complete separation of

$$E(\langle \mathcal{F} \rangle') = \langle \mathcal{F} \rangle = \int \langle \mathcal{F} \rangle' p(\langle \mathcal{F} \rangle') \, d\langle \mathcal{F} \rangle'$$

$$\sigma^2 \ge 0 \quad \mathbf{2} \quad \mathbf{3} \quad \mathbf$$

McICA

- funded by Atmospheric Radiation Measurement (ARM) Programme
 - fixed SSTs and sea ice
 - 15 day simulations; 10-member ensembles
 - divergence(noise)
 - ~5 GCMs: CCC, GFDL, NCAR, ECMWF, ECHAM, (GEM, CSU)
 - ultimately multi-year with interactive ocean

SW CRE (TOA)

Extending the McICA Method

- cloud microphysics:
 - ice crystal habit and size distribution
 - un(un)resolved variability:
 - x for ICA... Cairns et al.; Petty; Marshak et al.
- lower boundary condition:
 - distribution of surface types (albedo, emissivity)

Multi-layer canopy as extension of the atmosphere

two-stream solution

Equations for atmospheres and clouds

$$+ \pi F \omega_0 (1 - \beta_0) e^{-\pi \mu_0}$$
. (11) wh

Two-stream methods are defined for present purposes as methods satisfying the simplified expressions

$$\frac{dI^{+}}{d\tau} = \gamma_1 I^{+} - \gamma_2 I^{-} - \pi F \omega_0 \gamma_3 e^{-\tau/\mu_0}, \qquad (12) \quad \text{obt} \\ pro \\ dI^{-} \qquad \qquad \text{and}$$

$$\frac{dI^{-}}{d\tau} = \gamma_2 I^{-} - \gamma_1 I^{-} + \pi F \omega_0 \gamma_4 e^{-\tau/\mu_0}, \qquad (13)$$

the which are obtained from Eqs. (10) and (11) by asene: suming the μ dependence of I and approximating pro: the integrals. The γ_i 's are determined by the apalso proximations used and are independent of τ in all (11)cases. As will be shown, their values are constrained met by physical requirements; for example, the constraint defii $\gamma_3 - \gamma_4 = 1$ follows immediately from energy conπot servation. will

Equations for vegetation

$$\frac{dI^{+}}{d(\widetilde{LAI'}/2)} = \gamma_{1} I^{+} - \gamma_{2} I^{-} - \pi F \gamma_{3} \omega_{l} \exp(-\widetilde{LAI'}/2 \mu_{0})$$

$$\frac{dI^{-}}{d(\widetilde{LAI'}/2)} = \gamma_{2} I^{+} - \gamma_{1} I^{-} + \pi F \gamma_{4} \omega_{l} \exp(-\widetilde{LAI'}/2 \mu_{0})$$

stochastically generated subcolumn

Summary

- worth worrying about 3D (vs. ICA)?
- parametrize 3D RT in GCMs before MMF makes it explicit?
- McICA noise experiments
- extensions to surface, ice habits, etc...